A statistical analysis of avalanching heat transport in stationary enhanced core confinement regimes
نویسندگان
چکیده
We present a statistical analysis of heat transport in stationary enhanced confinement regimes obtained from flux-driven gyrofluid simulations. The probability density functions of heat flux in improved confinement regimes, characterized by the Nusselt number, show significant deviation from Gaussian, with a markedly fat tail, implying the existence of heat avalanches. Two types of avalanching transport are found to be relevant to stationary states, depending on the degree of turbulence suppression. In the weakly suppressed regime, heat avalanches occur in the form of quasiperiodic (QP) heat pulses. Collisional relaxation of zonal flow is likely to be the origin of these QP heat pulses. This phenomenon is similar to transient limit cycle oscillations observed prior to edge pedestal formation in recent experiments. On the other hand, a spectral analysis of heat flux in the strongly suppressed regime shows the emergence of a 1/f (f is the frequency) band, suggesting the presence of self-organized criticality (SOC)-like episodic heat avalanches. This episodic 1/f heat avalanches have a long temporal correlation and constitute the dominant transport process in this regime. VC 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4752218]
منابع مشابه
Sandpile model with tokamaklike enhanced confinement phenomenology.
Confinement phenomenology characteristic of magnetically confined plasmas emerges naturally from a simple sandpile algorithm when the parameter controlling redistribution scale length is varied. Close analogs are found for enhanced confinement, edge pedestals, and edge localized modes (ELMs), and for the qualitative correlations between them. These results suggest that tokamak observations of a...
متن کاملA sandpile model with tokamak-like enhanced confinement phenomenology
Confinement phenomenology characteristic of magnetically confined plasmas emerges naturally from a simple sandpile algorithm when the parameter controlling redistribution scalelength is varied. Close analogues are found for enhanced confinement, edge pedestals, and edge localised modes (ELMs), and for the qualitative correlations between them. These results suggest that tokamak observations of ...
متن کاملI-Mode: An H-Mode Energy Confinement Regime with L-Mode Particle Transport in Alcator C-Mod
An improved energy confinement regime, I-mode is studied in Alcator C-Mod, a compact high-field divertor tokamak using Ion Cyclotron Range of Frequencies (ICRF) auxiliary heating. I-mode features an edge energy transport barrier without an accompanying particle barrier, leading to several performance benefits. H-mode energy confinement is obtained without core impurity accumulation, resulting i...
متن کاملThe role of MHD in the sustainment of electron internal transport barriers and H-mode in TCV
Advanced scenarios exhibit improved confinement properties, which make them attractive candidate for ITER. For these to be achieved, the sustainment of transport barriers and therefore high pressure gradients is inherent. Their stability properties both in the transient and steady state phases is a major issue [1], because of the relationship between high performances and proximity to a stabili...
متن کاملDouble transport barrier experiments on Alcator C-Mod
Double transport barrier modes (simultaneous core and edge transport barrier) have been observed with off-axis ion cyclotron range of frequencies (ICRF) heating in the Alcator C-Mod tokamak[I. H. Hutchinson et al., Phys. Plasmas 1, 1511(1994)]. An internal transport barrier (ITB) is routinely produced in enhanced Dα H-mode (EDA) discharges where the minority ion cyclotron resonance layer is at ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2012